HW\#1: Constant \& Accelerated Motion

1. A track star runs the 100 m dash in 9.82 s .
a. What is his average speed? [$10.2 \mathrm{~m} / \mathrm{s}$]
b. What is his average speed in kilometers per hour. [36.7 kph]
2. From the chart determine the intervals where velocity is positive, negative, or zero.

time interval	direction (slope)	time interval	direction (slope)	time interval	direction (slope)
$0 \rightarrow 1$	+	$5 \rightarrow 6$	+	$10 \rightarrow 11$	+
$1 \rightarrow 2$	0	$6 \rightarrow 7$	-	$11 \rightarrow 12$	-
$2 \rightarrow 3$	0	$7 \rightarrow 8$	-	$12 \rightarrow 13$	+
$3 \rightarrow 4$	+	$8 \rightarrow 9$	-	$13 \rightarrow 14$	+
$4 \rightarrow 5$	+	$9 \rightarrow 10$	-		

3a. A stone is dropped from the roof of a 24.0 m high building. Calculate the speed the stone when it hits the ground.
[-21.7 m/s]
b. A stone is thrown from the roof of a 24.0 m high building at a speed of $3 \mathrm{~m} / \mathrm{s}$. Calculate the speed the stone when it hits the ground. [-21.9 m/s]
4. A car is traveling $72.0 \mathrm{~km} / \mathrm{h}$ when the driver applies the brakes. If if the car slows down uniformly with an acceleration of $-4.5 \mathrm{~m} / \mathrm{s}^{2}$, how long does it take for the car to stop? [4.44s] How far does the car travel before coming to rest?
[44.4 m]
5. A stone is projected vertically downward from the top of a building with an initial speed of $9.0 \mathrm{~m} / \mathrm{s}$ and hits the water 2.7 s later. Determine the height of the building. [-60.0m] What is the final velocity? [$-35.5 \mathrm{~m} / \mathrm{s}$]
6. A stone is dropped from the roof of a tall building. A second stone is dropped 1.50 s later. How far apart are the stones when the second one has reached a speed of $21.0 \mathrm{~m} / \mathrm{s}$? [42.3 m apart]
7. A stone in a slingshot is shot straight in the air at a velocity of $80 \mathrm{~m} / \mathrm{s}$. On its way straight down it hits a glider 1.25 seconds after attaining its highest point.
a) What was its velocity when it hit the glider? [$-12.25 \mathrm{~m} / \mathrm{s}$]
b) What was the altitude of the glider? [318.9 m]
8. A log is floating on swiftly moving water. A stone is dropped from rest from a $75-\mathrm{m}$-high bridge and lands on the \log as it passes under the bridge. If the log moves with a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$, what is the horizontal distance between the \log and the bridge when the stone is released? [19.6m]
9. The driver of a car traveling at $90 \mathrm{mi} / \mathrm{hr}$ observes a hazard on the road and applies the brakes, giving constant deceleration of $7.5 \mathrm{ft} / \mathrm{s}^{2}$. If the driver's reaction time is 0.15 s , how much time does it take to stop the car after sighting the hazard? What is the total distance traveled before the car comes to rest?

