Distance	gravity	formulas	formulas	Forces
$1 \mathrm{mile}=$ $5,280 \mathrm{ft}$	$1 \mathrm{~g}=32 \mathrm{ft} / \mathrm{s}^{2}$	$\Delta S=V_{0} t+1 / 2 a t^{2}$	$\Delta Y=V_{0,} t+1 / 2 a_{y} t^{2}$	Weight $=\mathrm{mg}$ $1.0 \mathrm{lb}=4.445 \mathrm{~N}$
$1 \mathrm{ft}=12$ inches	$1 \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$	$V_{f}=V_{0}+a t$	$V_{f y}=V_{0 y}+a_{y} t$	$1.0 \mathrm{slug}=14.59 \mathrm{~kg}$
1 meter $=100$ centimeters	$1.0 \mathrm{ft}=0.305 \mathrm{~m}$	$\Delta S=\frac{V_{f}^{2}-V_{0}^{2}}{2 a}$	$\Delta Y=\frac{V_{f y}^{2}-V_{0 y}^{2}}{2 a_{y}}$	friction force $=\mu \mathrm{N}$ $\mu=$ coefficient of fric $\mathrm{N}=$ Normal Force
1 meter $=$ 1,000 millimeters		$\Delta X=V_{0, x} t$	British: Forces in pounds mass in slugs	
1 Kilometer $=$ 1,000 meters	Normal is \perp to surface		$V_{f x}=V_{0 x}$	Metric: Forces in Newtons Mass in kg

