ROTATIONAL DYNAMICS

1. The frictional force between the block and table is 20 N . If the moment of inertia of the wheel is $4.0 \mathrm{kgm}^{2}$,
a. What is the tension pulling up and the tension pulling across?
$\left[\mathrm{T}_{1}=24.3 \mathrm{~N}, \mathrm{~T}_{2}=20.4 \mathrm{~N}\right]$
b. What is the acceleration of the blocks?
[$0.0866 \mathrm{~m} / \mathrm{s}^{2}$]
c. What is the angular acceleration of the pulley? [0.289 radians/s ${ }^{2}$]
d. how long will it take the block to drop 60 cm after the system is released? [3.72 s] Assume no slippage between rope \& wheel.
2. Two masses of 5 and 10 kg are attached together by a string that goes over a flywheel as indicated in the diagram. The flywheel is a uniform disc of radius 20 cm and mass 6 kg . If there is no slippage between the string and the flywheel rim, and if there is a friction torque of 3 Nm exerted on the wheel by its axle, what are $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and angular acceleration of the wheel?

Hin: $\mathrm{T}_{1} \neq \mathrm{T}_{2}$
$\left[\mathrm{T}_{2}=58.4 \mathrm{~N}, \mathrm{~T}_{1}=79.1 \mathrm{~N}, \alpha=9.44 \mathrm{radians} / \mathrm{s}^{2}\right]$
3. A 5.5 kg flywheel at radius 20 cm is made to rotate at 600 rpm in 20 seconds starting from rest.
a. What is the torque produced by the motor? $[\tau=0.314 \mathrm{Nm}]$
b. How much work does it do? [W = 197.2 J]
c. How much power does it produce? $[\mathrm{P}=9.86 \mathrm{~W}]$
d. What if you turned off the motor and and a friction torque of 0.6 Nm started, how much time would elapse before the flywheel came
 to rest? $[\mathrm{t}=11.51 \mathrm{~s}]$
4. A square metal plate 0.20 m on each side, mass $=24 \mathrm{~kg}$ is pivoted about an axis through

$$
I_{\text {rectangle }}=\frac{M}{12}\left(\ell^{2}+w^{2}\right)
$$

its center and perpendicular to the plate, as shown in the figure. Calculate the net torque about the axis [answer: 1.96 Nm], and the angular acceleration [answer: $12.3 \mathrm{rad} / \mathrm{s}^{2}$] due to the
three forces shown in the figure if the magnitudes of the forces are $\mathrm{F}_{1}=80.0 \mathrm{~N}, \mathrm{~F}_{2}$ $=20 \mathrm{~N}$, and $\mathrm{F}_{3}=15 \mathrm{~N}$, and a friction torque of 2.5 Nm . (F_{2} is in the midpoint between the center and the corner)

5. A string is wrapped around a uniform cylinder of mass M and radius R . the cylinder is released from rest with the string vertical and its top end tied to a fixed bar. a. show that the tension in the string is one-third the weight of the cylinder.
b. the magnitude of the acceleration of the center of gravity is $2 \mathrm{~g} / 3$, and
(c) the speed of the center of gravity is $(4 \mathrm{gh} / 3)^{1 / 2}$ after the cylinder has descended through distance h. Verify your answer to part (c) with the energy approach.
a.

Torque Analysis

$$
\sum \tau_{i}=I \alpha
$$

$T R \sin 90^{\circ}=\frac{1}{2} m R^{2} \alpha$
$T=\frac{1}{2} m R \alpha \rightarrow \rightarrow T=\frac{1}{2} m R \frac{a}{R}$
$T=\frac{1}{2} m a$
$a=\frac{2 T}{m}$

Force Analysis

$$
T=W-m a
$$

$$
T=W-m\left(\frac{2 T}{m}\right)
$$

$$
T=W-2 T
$$

$$
3 T=W
$$

$$
T=\frac{W}{3}
$$

b \& c do yourselves

