SI Workshop Problems \#10: Rotational Equilibrium

1. A 0.5 kg uniform meter stick is hinged at 0.5 cm from one end and held horizontally by a force T applied at an angle of 30° with the horizontal as shown in figure 1 .
a. If T is applied at the end of the meter stick as shown, what is the magnitude of T and what is the force F exerted at the pivot on the meter stick?
figure 1

b. If the force T is applied in the same direction but at 60 cm from the pivot, what are T and $\mathrm{F} ?\left[\mathrm{~T}=8.08 \mathrm{~N}, \mathrm{~F}_{\mathrm{P}}=7.05 \mathrm{~N}, \theta_{\mathrm{P}}=7.0^{\circ}\right.$ in QII]
c. How do T and F from part (b) change if, as shown in figure 2 , a mass of 1 kg is suspended 35 cm from the left end of the meter stick? $\left[\mathrm{T}=19.4 \mathrm{~N}, \mathrm{~F}_{\mathrm{P}}=17.5 \mathrm{~N}, \theta_{\mathrm{P}}=16.6^{\circ}\right.$ in QII]

2. Find the tension in the cable and the force exerted at the pivot in the system shown in fig 3. The strut is uniform and has a mass of $20 \mathrm{~kg} .\left[\mathrm{T}=535 \mathrm{~N}, \mathrm{FP}_{\mathrm{P}}=728 \mathrm{~N}, \theta_{\mathrm{P}}=50.5^{\circ} \mathrm{in} \mathrm{QI}\right]$
figure 3

3. In figure 4, assume the wall is frictionless. The ladder is 12 ft , uniform, and weighs 20 lb . The painter weighs 160 lb and wants to climb $2 / 3$ of the way up.
a. What is the minimum coefficient of static friction, μ_{s} needed with the floor? $[\mu=0.125]$
b. If the wall has a coefficient of static friction of 0.2 , what is the minimum coefficient of static friction needed with the floor?
4. A uniform 400 N boom is setup as in figure 5 . Find the tension in the rope holding the boom and the magnitude and direction of the force at the pivot. $\left[\mathrm{T}=2,461 \mathrm{~N}, \mathrm{~F}_{\mathrm{P}}=3423 \mathrm{~N} ; \theta_{\mathrm{P}}=-5.8^{\circ}\right.$ in QIV (5.8° below the boom,
 Q4)]

figure 6
5. In figure 6, the door is uniform and weighs 200 N . The hinges are 2.5 m apart. Each hinge is a distance d from the top or bottom corner, respectively. What are the forces exerted at the hinges? $\left[\mathrm{F}_{1}=40.0 \mathrm{~N}, \mathrm{~F}_{2}=204 \mathrm{~N}, \theta_{\mathrm{P} 2}=78.7^{\circ}\right.$ in QI $]$

