HW\#11: PRESSURE

1. The deepest point in the Pacific Ocean is the Mariana Trench, about 11 km deep. The pressure at the ocean floor is huge, $\sim 1.13 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$.
a. Calculate the change in Volume of $1.00 \mathrm{~m}^{3}$ of water carried from the surface to the bottom of the Pacific. $\left(B_{\text {water }}=0.210 \times 10^{10} \mathrm{~Pa}\right)\left[-0.05376 \mathrm{~m}^{3}\right]$
b. The density of water at the surface is $1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Determine its density at the bottom. [1089 kg/m³]
c. Is it a good approximation to think of water as incompressible?
2. On the Food Network one of the Thanksgiving episodes showed how to make gravy. The host poured the drippings from the roasted turkey into a cylindrical container, where the gelatin (density $=.92 \mathrm{~g} / \mathrm{cm}^{3}$) separated from the fat (density $\left.=.68 \mathrm{~g} / \mathrm{cm}^{3}\right)$. If there was 20 cm of gelatin and 10 cm of fat, determine the pressure at:
a. the top of the cylinder. [atmospheric pressure]
b. between the fat and the gelatin. [$\left.1.020 \times 10^{5} \mathrm{~Pa}\right]$
c. at the bottom of the gelatin. $\left[1.038 \times 10^{5} \mathrm{~Pa}\right]$
3. When you suddenly stand up after lying down for a while, your body may not compensate quickly enough for the pressure changes, and dizziness may result. If the gauge pressure of blood (density $=1.06 \mathrm{~g} / \mathrm{cm}^{3}$) at your heart is 13.3 kPa and your body does not compensate:
a. Determine the pressure at the top of your head ($\sim 50 \mathrm{~cm}$ above your heart) [8.1 x $\left.10^{3} \mathrm{~Pa}\right]$
a. Determine the pressure at feet ($\sim 130 \mathrm{~cm}$ below your heart) [2.6804 x $10^{4} \mathrm{~Pa}$]
4. A Mercury based barometer will show normal atmospheric pressure at $\sim 76 \mathrm{~cm}$. Blaise Pascal constructed a barometer based on red wine (density $\left.=.984 \mathrm{~g} / \mathrm{cm}^{3}\right)$. At what height of red wine will atmospheric be measured? [10.5 m]
