

1. For the pict solve for tension \& acceleration of the system without friction if: $\mathrm{m}_{1}=5 \mathrm{~kg}, \mathrm{~m}_{2}$ $=3 \mathrm{~kg}$, and $\theta=30^{\circ} .[\mathrm{T}=27.6 \mathrm{~N}]$
2. For the pict solve for tension $\& \mu$ of the system if, $\mathrm{m}_{1}=7.5 \mathrm{~kg}, \mathrm{~m}_{2}=10 \mathrm{~kg}, \theta=37^{\circ}$, and $\mathrm{a}=1.25 \mathrm{~m} / \mathrm{s}^{2} .[\mu=0.54]$
3. For the $2^{\text {nd }}$ pict if $\theta=30^{\circ}, \mathrm{M}_{\mathrm{a}}=10 \mathrm{~kg}$, $\mu=.3$, and the acceleration of the system is $1.2 \mathrm{~m} / \mathrm{s}^{2}$, what is the tension in the string and the mass of M_{b}. $[\mathrm{T}=$ $41.4 \mathrm{~N}]$
4. For the $2^{\text {nd }}$ pict if $\theta=37^{\circ}, M_{a}=10 \mathrm{~kg}$, $\mathrm{M}_{\mathrm{b}}=22 \mathrm{~kg}$, and $\mu=.25$, what is the tension in the string and the acceleration of the system.
[T $=43.8 \mathrm{~N}]$

5. For the $2^{\text {nd }}$ pict if $\theta=45^{\circ}, \mathrm{M}_{\mathrm{a}}=5 \mathrm{~kg}$,
$\mathrm{M}_{\mathrm{b}}=8 \mathrm{~kg}$, and the acceleration is $1.5 \mathrm{~m} /$
s^{2}, what is the tension in the string and μ of the system. [$\mathrm{T}=24.4 \mathrm{~N}$]
6. For the $2^{\text {nd }}$ pict if $\theta=30^{\circ}, \mu=0.1, \mathrm{M}_{\mathrm{b}}=10 \mathrm{~kg}$, the acceleration is $1.25 \mathrm{~m} / \mathrm{s}^{2}$, what is the tension in the string and M_{a} of the system. (figure it out yourself)
