SI Workshop Problems \#6: Newton's 2nd Law (2 or more bodies)

1. A force F is pulling three blocks horizontally as shown in figure 1 . Each block has a mass of 2 kg . If the system is to accelerate at the rate of $10 \mathrm{~m} / \mathrm{s}^{2}$, what is the value of F and the tension in the ropes between the blocks:

figure 1
a. assuming there is no friction? $\left[\mathrm{T}_{3}=20 \mathrm{~N}, \mathrm{~T}_{2}=40 \mathrm{~N}, \mathrm{~T}=60 \mathrm{~N}\right]$
b. if $\mu_{\mathrm{k}}=0.4$ between the blocks and the table? $\left[\mathrm{T}_{3}=27.8 \mathrm{~N}\right.$, $\left.\mathrm{T}_{2}=55.6 \mathrm{~N}, \mathrm{~T}=83.4 \mathrm{~N}\right]$
2. A block of ice ($10 \mathrm{~kg}, \mu_{\mathrm{k}}=0.1$) is pulling a block of wood (5
 $\mathrm{kg}, \mu_{\mathrm{k}}=0.4$) down a 30° incline. What is the acceleration of the system and the tension in the rope connecting the blocks? $\left[a=3.20 \mathrm{~m} / \mathrm{s}^{2}\right]$

3. If μ_{k} is 0.2 everywhere, what are the tensions in the ropes and the acceleration of the system shown in figure 2 if the masses of A, B, and C are 10,20 , and 30 kg respectively, and $\theta=27^{\circ}$.
4. a. Refer to figure 4. If the angle of inclination, θ is $15^{\circ}, \mu_{\mathrm{k}}=0.25$, and the acceleration is $3.0 \mathrm{~m} / \mathrm{s}^{2}$ up the incline what is the mass of block m ? [going up incline $\mathrm{M}_{\mathrm{B}}=25.8 \mathrm{~kg}$]
b. If $\mathrm{m}=100 \mathrm{~kg}, \mu_{\mathrm{k}}=0.25$, and the acceleration is $3.0 \mathrm{~m} / \mathrm{s}^{2} \underline{\text { down }}$
 the incline, what is θ ? $\left[\theta=56.6^{\circ}\right]$
5. A block is on a 30° incline, which can itself slide on a horizontal surface as shown below.
a. If everything is frictionless, what horizontal acceleration must you give to the incline to prevent the block from sliding down? $\left[a=5.658 \mathrm{~m} / \mathrm{s}^{2}\right]$

b. If the block and the wedge weigh 2 and 5 kg respectively, what horizontal force F must you apply on the wedge to produce this acceleration? $[\mathrm{F}=39.6 \mathrm{~N}]$
