1. What is the period of a conical pendulum of length 1.0 m that describes a circle of 15 cm inches in radius?

[ $\mathrm{t}=1.55 \mathrm{~s}$ ]
2. A 1-kg ball rotates around a vertical axis at
 the rate of 90 rpm , held by two 1.0 m strings as shown. What is the tension in each string ?
$\left[\mathrm{T}_{1}=52.55 \mathrm{~N}, \mathrm{~T}_{2}=36.28 \mathrm{~N}\right]$
3. You weigh 150 lb and you take a ride in a giant vertical ("Ferris") wheel in an amusement park and you sit on a scale. If the wheel has a radius of 40 ft and the scale reads 125 lb when you are at the highest point, what will the scale read when you are at the bottom? [175 lbs] How fast is the wheel turning in revolutions per minute (rpm)? [3.5 RPM]
4. Assuming the earth is round, if you "weigh" 160 lb at the poles, how much would you "weigh" at the equator? [between 159.4 and 159.83 lbs depending on radius and period]
5. What minimum friction coefficient would let your car round a curve or radius 1000 ft at 50 mph on an unbanked stretch of road? [ $\mu=0.168$ ]
6. A freeway is banked around a curve with a 200 m radius so that you can go at 60 kph without needing friction.
a. What is the angle of the bank? Here's pict of a banked curve
b. Calculate the friction coefficient needed to keep your car on the road if you are going at 70 kph on that same stretch of freeway? $[\mu=0.05]$
c. What if you were going at 45 kph ?

7. balls rotate around a vertical axis at the rate of 120 rpm , held by two 0.5 m strings at the top $\&$ bottom and a connecting string as shown. If the mass of the top ball is 1.5 kg , what is the tension in each string and what is the mass of the ball at the bottom? $\left[\mathrm{T}_{1}=118.1 \mathrm{~N}, \mathrm{~T}_{2}=79.6 \mathrm{~N}, \mathrm{~T}_{3}=85.8 \mathrm{~N}, \mathrm{~m}_{2}=\right.$ 1.09 kg ]
