1. At the scene of an elevator accident, an investigator is gathering evidence. At some point the cable broke and a one metric ton elevator with 8 passengers of average mass 70 kg each started to descend. Immediately after the cable snaps, the safety measure begins, which creates a friction force of 15,000 N to slow down the elevator. If the final velocity of the elevator was deduced to be $4 \mathrm{~m} / \mathrm{s}$, approximately how many stories did the elevator fall. (Note: Each floor is 4 m in height, one metric ton $=1000 \mathrm{~kg}$.) [answer ~ 11 floors]
2. When a 100 metric ton (1 metric ton $=1,000 \mathrm{~kg}$) flying saucer reaches an altitude of 75 Km . At that moment the saucer has a velocity of $9000 \mathrm{~km} / \mathrm{hr}$. If the friction force is $500,000 \mathrm{~N}$, how much force was needed to propel the saucer upward? Note: Assume that the propulsion system is not internal. [Answer: ~5.647 MN (Mega-Newtons]
3. At a ski resort a chair lift takes skiers up a 30° hillside to an elevation of 180 m . How much horsepower must the engine have to pull 50 skiers at a time, at a speed of $4.0 \mathrm{~m} / \mathrm{s}$, if the average mass of each skier and their equipment is 82 kg each and the frictional energy loss is 3.6 MJ (Mega-Joules)? Hint: Power $=$ Work/time [Answer: 161.3 hp]

180 m
4. A 1500 kg car moves down a level street under the influence of two forces: a 1000 N forward force exerted on the drive wheels and a 800 N resistive force.
a. What is the speed of the car after it has traveled 40 m ? [Answer: $3.27 \mathrm{~m} / \mathrm{s}$]
b. At the 40 m point the engine switches off and the car coasts up an incline of 7.0°. If the resistive force on the incline is 20%
less than on the level street, how far along the incline will the car travel? [for part b. $\Delta \mathrm{S}=3.29 \mathrm{~m}$]
5. A $10.0-\mathrm{kg}$ block is released from rest at point A in figure. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m . The block travels down the track, hits a spring of force constant $2250 \mathrm{~N} / \mathrm{m}$, and compresses the spring 0.300 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. [Answer: $\mu=0.328$]

