## HW\#9: Rotational Equilibrium

1. A uniform beam of unknown mass is attached to the wall with a pin and supported by a string at $18^{\circ}$ above the horizontal as shown in figure 1. The maximum tension that can be applied to the string is 600 N .
a. If a 15 kg mass is suspended from the end of the beam, what is the greatest total mass of the beam before the string breaks? [ $\left.\mathrm{M}_{\text {beam }}(\mathrm{MAX})=6.40 \mathrm{~kg}\right]$


15 kg
b. What is the force and angle on the beam at the pivot? [ $\theta=-1.1^{\circ}$ (from x-axis), Q4; F=556.4N]
2. A uniform crane with a wrecking ball needs a support braced against the ground. The brace is $3 / 5$ of the length of the crane from the pivot.
a. If the mass of the crane is 2000 kg and the maximum force the can be applied to the brace is $60,000 \mathrm{~N}$, what is the maximum mass of the
 wrecking ball? $[\mathrm{M}(\mathrm{MAX})=\sim 3600 \mathrm{~kg}]$
b. What is the magnitude and direction of the force at the pivot? $\left[\theta=10.7^{\circ}\right.$ (from $x$-axis), $\left.\mathrm{Q} 1 ; \mathrm{F}=48,850 \mathrm{~N}\right]$
3.Refer to figure 3. Given the following information: angles

figure 3 $\theta_{1}=20^{\circ}, \theta_{2}=30^{\circ}, \theta_{3}=41^{\circ}$, a 200 lb hanging weight positioned at $3 / 4$ the length of the 50 lb uniform bar, find the tension in the wire positioned at $4 / 5$ the length of the bar and the force at the pivot. $\left[\mathrm{T}=304.75 \mathrm{lb} . ; \theta_{\mathrm{P}}=11.2^{\circ}\right.$ (above the bar, Q 1 ); $\mathrm{F}_{\mathrm{P}}=$ 132.6 lb.$]$

3 b . Refer to figure 3 . Given the following information: angles $\theta_{1}=20^{\circ}, \theta_{2}=30^{\circ}, \theta_{3}=41^{\circ}$, a 35 kg hanging mass positioned at $3 / 4$ the length of the 20 kg uniform bar, find the tension in the wire positioned at $4 / 5$ the length of the bar and the force at the pivot. $\left[\mathrm{T}=652 \mathrm{~N}, \theta_{\mathrm{P}}=12.6^{\circ}\right.$ (above the bar, Q1); $\mathrm{F}_{\mathrm{P}}=382 \mathrm{~N}$ ]
4. Assume that the end of the uniform beam in figure 4 is just resting against a frictionless wall. If the cable is attached at $3 / 4$ of the length and the mass of the weight is 20 kg , determine the mass of the beam and the tension in the string. (Note: There is no pivot force working here)

figure 4

5. A uniform door with two hinges and a mass of 100 kg is shown in figure 5. The y-component of $\mathrm{F}_{1}$ is 250 N , the distance from hinge to hinge is 1.5 m , and the distance from hinge 1 and the top is equal to the distance from hinge 2 and the bottom. The width of the door is 1.0 m . Determine the magnitudes and directions of $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$.
$\left[\theta_{1}=-37.4^{\circ}(\mathrm{Q} 2) \mathrm{F}_{1}=411.3 \mathrm{~N} ; \theta_{12}=65.9^{\circ}(\mathrm{Q} 1) \mathrm{F}_{1}=800 \mathrm{~N}\right]$
6. Go over your Rotational Equilibrium lab. If you are the student holding the write-up, make sure you give your lab partners a photocopy to study.

