Workshop Problems \#9: Collisions

Collision Type	Momentum Conserved	Energy Conserved
Elastic	Yes	Yes
	$m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$	$v_{1 i}+v_{1 f}=v_{2 i}+v_{2 f}$
Inelastic	Yes	No
	$m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$	$\varepsilon=\frac{v_{2 f}-v_{1 f}}{v_{1 i}-v_{2 i}}$
Perfectly Inelastic	Yes	No
	$m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f}$	
$\left(m_{1}+m_{2}\right) v_{i}=m_{1} v_{1 f}+m_{2} v_{2 f}$		

A perfectly inelastic event can:

- start with objects together (raft \& man, hockey player \& puck, etc.) and end with them apart
- start with objects apart (two or more blocks, two or more cars, etc.) and end with them melding together

ALTERNATE KE/M FORMULA (Elastic collisions only)

$$
v_{1}+V_{1}=V_{2}+v_{2}
$$

COEFFICIENT OF RESTITUTION

$$
\varepsilon=\frac{V_{2}-V_{1}}{v_{1}-v_{2}}
$$

1. A block at rest is hit by another block coming in at $5 \mathrm{~m} / \mathrm{s}$. After the collision they stick together and move at $3 \mathrm{~m} / \mathrm{s}$. What is the ratio of their masses? $\left[\mathrm{m}_{1}=3 / 2 \mathrm{~m}_{2}\right]$ masses
2. Two blocks of mass 5 and 4 kg are involved in an elastic collision. The 5 kg ball is at rest and the other hits it head on going at $2 \mathrm{~m} / \mathrm{s}$. What are their velocities after the collision? [$\mathrm{V}_{1}=16 / 9$ $\left.\mathrm{m} / \mathrm{s}, \mathrm{V}_{2}=-2 / 9 \mathrm{~m} / \mathrm{s}\right]$ What would be their velocities if both balls were 5 kg each? $\left[\mathrm{V}_{1}=0, \mathrm{~V}_{2}=2 \mathrm{~m} / \mathrm{s}\right.$]
3. Two blocks, separated by a distance of 2 meters, are moving in the same direction at $5 \mathrm{~m} / \mathrm{s}$. The first one with a mass of 5 kg , hits a third block of mass 10 kg initially at rest; it bounces back and hits the second block of mass 3 kg . What are the final velocities of the blocks if all the collisions are elastic? [After the first collision: block C moves at $10 / 3 \mathrm{~m} / \mathrm{s}$, block B bounces
back at $-5 / 3 \mathrm{~m} / \mathrm{s}$ and hits block two; after the second collision: m_{A} bounces back at $-10 / 3 \mathrm{~m} / \mathrm{s}$ and block B bounces back (in the positive direction) at $10 / 3 \mathrm{~m} / \mathrm{s}$ (yes, the absolute values of the velocities of A \& B are the same after the second collision)]

4. A 4 kg ball traveling at $2 \mathrm{~m} / \mathrm{s}$, hits a 5 kg ball, initially at rest, and bounces off at 37° from its initial direction, going at $1 \mathrm{~m} / \mathrm{s}$. What is the velocity of the other ball after the collision? $\left[\mathrm{V}_{2}=\right.$ $\left.1.07 \mathrm{~m} / \mathrm{s} ; \theta=27^{\circ}, \mathrm{Q} 1\right]$ Is the collision elastic? $\left[\mathrm{no}, \mathrm{KE}_{0} \neq \mathrm{KE}_{f}\right]$
5. A man on a motionless raft jumps from the raft with a speed of $3 \mathrm{ft} / \mathrm{sec}$ with respect to the raft. If the man weighs 150 lb and the raft 400 lb , what are their final velocities with respect to the water? $[\mathrm{Vm}=2.18 \mathrm{ft} / \mathrm{s} ; \mathrm{Vr}=-0.82 \mathrm{ft} / \mathrm{s}]$
6. In the preceding problem, let's say there are two $150-\mathrm{lb}$ men on the raft, and they both jump with a speed of $3 \mathrm{ft} / \mathrm{s}$ with respect to the raft. Will the final velocity of the raft be greater if the two jump together or if they jump one after the other? [both jump together: $\mathrm{V}_{\mathrm{men}}=12 / 7 \mathrm{ft} / \mathrm{s}$, $V_{\text {raft }}=-9 / 7 \mathrm{ft} / \mathrm{s}$; greater if the men jump individually)
7. Two blocks of 2 and 3 kg mass are moving toward each other at the speeds of 6 and $10 \mathrm{~m} / \mathrm{s}$ respectively. They hit with a coefficient of restitution of 0.4 . What are their final velocities? $\left[\mathrm{V}_{1}=-7.44 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{2}=-1.04 \mathrm{~m} / \mathrm{s}\right]$
8. What is ε in a collision if kinetic energy is conserved? $[\varepsilon=1]$
